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Abstract: The Mobius function p(n) arises naturally in Number Theory when one inverts the classical Riemann
Zeta function.
In my paper Modifying Mobius [1], I modified the classical Mobius function and produced a number of interesting
results such as

where (n) counts, with multiplicity, the number of prime factors of n, and

o0

1—1—1 (n) |?

: E’

where w(n) counts the number of distinct prime factors of n.
In this paper, I present some further arithmetic and analytic results based on these ideas.
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1 Introduction

ber r defined above, 2(n) for Z a; and set w(l) =

7j=1

T

Write, once and for all, n = H pjo-‘j as the canonical
J
prime factorisation of a positive integer n > 1. For a
given n, this defines the numbers 7, ov; and primes p;.
The classical Mobius function, p(n), is defined
by

1 if n=1
uwn)=<¢ 0 if
(=) if n=pip2...pr

The modified Mobius function, p1(n), is defined ex-
actly as above, except that the number —1 is replaced
by ¢. That is:

1 if n=1
pi(n) =< 0 if
" if n=pips...pr

It is obvious that p1(n) is multiplicative, but not com-
pletely multiplicative.

As usual, for n > 1, we write w(n) for the num-
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n has a square factor (except 1)

n has a square factor (except 1)

Q(1) = 0.
We define the arithmetic functions:
e u(n) =1forall n,
1 ifn=1
o I(n) = { 0 otherwise

Also, as usual we define the Dirichlet Product, f * g
of two arithmetic functions, f, g by

() =3 1@ s(%) =d|an(Z>g(d)

The function g is called the Dirichlet Inverse of f if
frxg=1.

Since p1(n)? = p(n), it immediately follows from
the well-known result for y that

Yo wi(d) =

d|n

Note also that pu(n)u1(n) = pi(n).
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2 Arithmetic Properties of ;.

Theorem 1 Forn > 1,

S ) = (14 1.
dln

Proof: See [1], p. 245. O

The function h(n) = (1 + i)*(") will arise in several
places further in this paper. The Dirichlet inverses of
w1 and of h are easy to compute.

Lemma 1 a. The Dirichlet inverse for y; is given by

b. With h(n) defined above, the Dirichlet inverse,
h~1(n) is given by

B ) = (1= (=) = Ra)ai (n),

Proof: a. Since y; and its supposed inverse are multi-

plicative, it suffices to show that Z 11 <Z> (_Z')Q(d)
din

is zero when n = p®, for p a prime and o > 0 and 1

when n = 1. This is an easy exercise.

b. Since h and its supposed inverse are multiplicative,
it suffices to show that

Z h ( ) — )@ (=)¥9) is zero when n = p®,
dln

for p a prime and o > 0 and 1 when n = 1. This is an
easy exercise. O

2.1 Analogs of the Arithmetic Functions:

The arithmetic functions,

= Z 1, o(n) = Zd,
din

dn (d,n)=1

are all intimately connected with the M&bius function.
Hence, we would expect the modified Mdbius func-
tion to produce a new suite of analogous arithmetic
functions.

E-ISSN: 2224-2872

Peter G. Brown

2.1.1 Analogs of v and 7.

Since u = p~ ', we define u; = py! = (=) and
note that |u1 (n)| = u(n).

Also, since 7 = uxu, we define 1 = pfl * ufl, then,

since 71 is multiplicative, and
_ 1 (P
=Y witawr (%)

dlp™

_ Z Q(d)+Q 2y _
d|pe

(a+1)(=0)%,

we have
m1(n) = H(O@ +1) (=) = (=) 7 (n).
J
Thus |71 (n)| = 7(n).

In consequence of our definition, we have 7 * u; =
(—i)Q = Ui.

2.1.2 Analogs of N and o.

We replace the (completely multiplicative) function
N, defined by N(n) = n, by Ny(n) = (—i)?n.
Since ¢ = N * u, we define 01 = Ny * uy. Since oy
is multiplicative, and

:ZNl(d);fl( ) S d(—i) 2D+

dlp™ dlp™
_ (N« 2 a\ _ (o pa—H*l
= (=) (1+p+p°+- - +p%) = (—i) Vo1 )

we have

aj;+1 .
oi1(n) = H(—i)aj (pjp 1 1) = (_i)ﬂ(n)g(n)-

Note again that |01 (n)| = o(n).

In consequence of our definition, we have o1 * u; =
Ni.
2.1.3 Analog of ¢.

Since ¢ = N * u, we define ¢
is multiplicative, and

= Z Ny(d)pr (i)

dlp™

= Ny * . Since ¢
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)+ u(p) N1 (p*7Y)

—Z,Ul

d|p("
1
- 71 apa <1 a > ’
(=) )

we have

Note again that |¢1(n)| = ¢(n).

2.1.4 Analog of ).
The classical Liouville function ) is defined by
An) = (—1)%).

It is not immediately clear what the correct analogue
should be. In order to obtain results analogous to the
classical results, it seemed best to define:

Ai(n) =1" where n = M?(p1pa...p,).

When n is square, we take A(n) = 1.
It is immediately clear that \; is multiplicative.

Theorem 2 Forn > 1,
-3 ()
= 15 )
d2|n d

Proof: It suffices to prove that these expressions agree
at prime powers.

d%%/h (;) = 1 (p®) + (P2 + ...

This is p1(1) = (p ) in the case when « is

even and 1 (p) = A1(p%) in the case when « is

odd. O
By analogy with the classical case, we have

Theorem 3 Forn > 1,

) 1 if nisasquare
(A1 xu)(n) = { 0 otherwise

Proof: Since the left-hand side is a multiplicative
function, it again suffices to check the prime powers.

a

()\1 * U1 Z /\1

dlp™
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(67

=Y X\ (d2)u1(d2)+ > Al(d)m(%)-

d?|p> d|p™

d not square

In the case that « is even, these sums become:

ur(p®) + ur(p® %) + ...

+ur (1) + A (p)ur (P + M (PP (p*7°) + ...
+A1(p* Hua (p)
=1.
since, when evaluated, all the terms cancel except

u(1) = 1. Similarly, the case « odd gives a sum of
zero. O

Theorem 4 Forn > 1,

Z M(d a@ _ ) —1 if n is a square
0 otherwise.
dln

Proof: This is simply checked by again considering
the sum at prime powers. O

2.2 Mbobius Inversion Analog:

The analog of Mdbius inversion is provided by:

Theorem S Suppose the arithmetic functions F' and
f are connected by

=> f)(-

dn
then forn > 1,

f(n) = (F * p1)(n), that is,
F(Ou@d) =S Fldyu (2.
Z zron (i)

n

Proof: Since F'(n Z f(d ), can be writ-

tenasF:f*ul,wehave
Forpy = (f*u)xp = f*u*m)=f

Translating back, the result follows. O
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2.3 Connections with the classical Arith-
metic Functions.

There are many relations between these analogs and
the classical functions. Most of these are just exer-
cises, so I have only included a small number of the
more important connections.

Theorem 6 Suppose the arithmetic functions F' and
f are connected by

n) = f(d)

din

then forn > 1,

()0 = 7+ (), it
> F(Cmd) =31
din din

Proof: We can write Theorem 1 as

w pa(n )—( ')W(”)—h(n)-
Also, F(n Zf , can be writtenas F' = f xu
din
and so
Fopp = (fxu)xpy = fx(usp)=fxh

Translating back, the result follows. O

Theorem 7 Forn > 1,

= > u u (1 h)(n).

dn
Proof:
Use ordinary Mobius inversion on the result of Theo-
rem 1. O

Theorem 8 Forn > 1,

(mx7)(n) =) m(d =3 (1 +i)#@

din din

= _hd)

dln

Qu

Proof: This follows from a direct application of The-
orem 6 O

Theorem 9 Forn > 1,

,ul n ) 1
= E o =) (1+3)D = =(¢pxh)(n
n‘d <d>( n( )

:1;[(1+;k>.

dln
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Proof: From the well-known result, Z ¢(d) =n,a
din
direct application of Theorem 6 yields,

%Zﬂl Z¢( ) 14 0)~@.

The second equality can be obtained easily by evalu-

ating the first sum at prime powers. O

3 Analytic Theorems regarding /:;.

We now consider the partial sums related to p; and try
to obtain some preliminary asymptotics.

Theorem 10 Forx > 1

> ) [ 2] = L1490 = 3 hin)

n<x n<x n<x
Proof:
> ) |2 = S i) T 1= S
n<x n<z J<Z n<z dln
= Z (141) (
n<x
from Theorem 1. O

(Note: The penultimate equality uses the so-

called sum-divisor identity:
> fn)Y g(d).)

viz Z g(n) Z f(nj) =

n<z j<z n<zx d|n
- n

The following result gives the Dirichlet series for
h(n).
Corollary For z > 1,

Z“l Vr— 7 Z—)+O(xloga:)

Pr::);.
1;:#1 [ ] %#1 ( (1)>2

:Zﬂl

x? T
(n)— + 0O —
n<a n? rg "
22 Ml 1
T -
n<x ( 'rz:x n)

w(n)
Z 1+Z + O(xlog )

using the previous theorem and standard asymptotic
results. g
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3.1 TheSum > h(n)

n<x

Theorem 11 For x > 1,

> h(n)

n<z

(xlogx).

Proof: From Theorem 10,

n;C(l iyt = 1; 1 (n) m n; m
<z % = O(zlogx)

Note: It is not clear that this is the best estimate.
Despite this, numerical evidence suggests that the re-
sult of Theorem 11 has an implied constant about 0.2.

3.2 Series involving \;

Using Theorem 3 and the fact that Z Z fld) =

n<z dn

S f (n)LEJ for any arithmetic function f and for
n<x n
x > 0, we can prove:

Theorem 12 For x > 4
Q(n)

Z/\l() <

n<x n

N W

Proof: Applying the result above, we have

n<x n<z d|n

By Theorem 3, the inner sum is zero whenever n is

not a square and —1 when it is, so we can replace the
double sum by —[y/z]. Also, writing LEJ as © —
n n

{w} and re-arranging we have
n

DI

= 1S mmir {2 v

n<lx n<lz
3
<z +[vVr] < PR
since for z > 4, \/x < %SL' Dividing by z gives the
result. O
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4 The sum ) p(n) and the analog

n=1 n’
of the Zeta Function.

Suppose s > 1.
We define the modified Zeta function, (1(s), by

= (i)

o k() ‘
)_Z ns _Z 7’Ls ,OI‘S>]_’
n=1 n=1
1 —1
ith Eul duct 1-—— .
with Euler produc H( g )
— #1(n)

Also,

CI(S) a n=1 n?
These series and products only converge abso-
lutely for s > 1.

The following result is useful for numerical calcula-
tions
Lemma

For s > 1,
oo
Proof: We note that for k£ odd, i1 (2k) = ip1(k) and

that by definition p;(4k) = 0. Splitting the series
according as n is even or odd, we have

Z Ml ,Ul

Z Ml(n).

n=2 mod 4

= (1—2%)

n=1
neven ﬂodd
_fm@)  m@) | m(5) }
_{ s 3 g T
2 4
¥u>+um>+mwph}
45 6°
_2 11 (10) }
i 6 L s T

{
{ 65 )4 “11(0180)...}

Z Ml(n).

s
n=2 mod 4 n

= (1 - 2%)

O

Using exactly the same idea, given any prime p, we
can split the sums into terms with n = 1,2,3,...;p
mod p and deduce that for s > 1
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4.1 Dirichlet Series for A(s).

Theorem 13 Fors > 1,

. — p1(n)
2

Proof: See [1], p. 247. O

Theorem 13 can now be written as

= nm)[* (s)¢(29)
nz::l ns | ((4s)

for s > 1.

For s > 1, we can split the series into even and odd
values of n and a simple re-arrangement leads to the
identity

= 25+ h(n)
Y- T
n odd

valid for s > 1.
More generally, if p is prime, we can write
— h(n)  (p°+i h(n)
Z ns s Z
n=1

— s
p 1 n>1 n
n#Z0 modp

valid for s > 1. From this we have

i h(n) _ (ps + 1> Z h(n)
n=1 n’ L+ n>1 n® ’
- nEOTnodp

valid for s > 1.

C (2s)
Gi(s)

¢(25) fiéﬁﬁl

Note: The Dirichlet series for

does not appear

to be analogous to the classical

C(s) ‘= no
Corollary
Fors > 1,
o~ (L=9)“M (=) ((4s)
,;1 n? —C(28)¢(s)

"My Vacation Scholar, Mr. Trent Merbach, discovered and
proved the following result: Writing each integer n uniquely in
the form n = N2 M, with M square-free, we have, for s > 1,

Sy

n=1

sz(M) sz(N)
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Using the well-known formula for (2t), ¢ an integer,
we also have

Corollary
o (—1)Y(2m)?(2¢t)! By
|G| = (@0)! By

where t is an integer > 1, and B; are the Bernoulli

numbers.?
Corollary
9 2
: G|
For t an integer greater than 1, is rational.
G(2t)

4.2 Dirichlet series for modified arithmetic
functions.

Since o1(n) = (—i)*™g(n), we can use the stan-
dard Euler product method to find the Dirichlet series
for o1(n) in terms of the modified Zeta function as
follows.

Theorem 14 For s > 2,

Proof:

N o p—1 1+ipl=s  1+ip—s
=11 1
o (L+ip!=*) (1 +ip~?)

= Qs = Da(s).

A similar calculation gives

2There are several (inconsistent) definitions of these. Here

.t N Bat"
they are defined by the power series o1 Z T

n=0
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Theorem 15 For s > 2,

= nf Ci(s)
Hence i G;(?) = Cf(s) i qb;f:b)
n=1 n=1

Theorem 16 For s > 1,

i mi(n) _
n=1
Proof:
20 _ o ()P N (=)
1) =2 2
S ST
n:ln d
D IED YEILLIED SETELEI
n=1"" dn n=1"
_ i 71(n)
n=1 n®
O
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