The Modified Möbius Function.

PETER G. BROWN
University of New South Wales
School of Mathematics and Statistics
Sydney
AUSTRALIA
peter@unsw.edu.au

Abstract: The Möbius function $\mu(n)$ arises naturally in Number Theory when one inverts the classical Riemann Zeta function.
In my paper Modifying Möbius [1], I modified the classical Möbius function and produced a number of interesting results such as

$$
\left|\sum_{n=1}^{\infty} \frac{(-i)^{\Omega(n)}}{n^{2}}\right|^{2}=\frac{\pi^{4}}{105}
$$

where $\Omega(n)$ counts, with multiplicity, the number of prime factors of n, and

$$
\left|\sum_{n=1}^{\infty} \frac{(1+i)^{\omega(n)}}{n^{2}}\right|^{2}=\frac{35}{12}
$$

where $\omega(n)$ counts the number of distinct prime factors of n.
In this paper, I present some further arithmetic and analytic results based on these ideas.
Key-Words: Möbius function, arithmetic functions, Riemann-Zeta function.

1 Introduction

Write, once and for all, $n=\prod_{j}^{r} p_{j}^{\alpha_{j}}$ as the canonical prime factorisation of a positive integer $n>1$. For a given n, this defines the numbers r, α_{j} and primes p_{j}.

The classical Möbius function, $\mu(n)$, is defined by
$\mu(n)=\left\{\begin{array}{lll}1 & \text { if } & n=1 \\ 0 & \text { if } & n \text { has a square factor (except } 1) \\ (-1)^{r} & \text { if } \quad n=p_{1} p_{2} \ldots p_{r}\end{array}\right.$
The modified Möbius function, $\mu_{1}(n)$, is defined exactly as above, except that the number -1 is replaced by i. That is:
$\mu_{1}(n)=\left\{\begin{array}{lll}1 & \text { if } & n=1 \\ 0 & \text { if } & n \text { has a square factor (except } 1) \\ i^{r} & \text { if } & n=p_{1} p_{2} \ldots p_{r}\end{array}\right.$
It is obvious that $\mu_{1}(n)$ is multiplicative, but not completely multiplicative.

As usual, for $n>1$, we write $\omega(n)$ for the num-
ber r defined above, $\Omega(n)$ for $\sum_{j=1}^{r} \alpha_{j}$ and set $\omega(1)=$ $\Omega(1)=0$.
We define the arithmetic functions:

$$
\begin{aligned}
& \text { - } u(n)=1 \text { for all } n \\
& \bullet I(n)= \begin{cases}1 & \text { if } n=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Also, as usual we define the Dirichlet Product, $f * g$ of two arithmetic functions, f, g by

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g(d)
$$

The function g is called the Dirichlet Inverse of f if $f * g=I$.
Since $\mu_{1}(n)^{2}=\mu(n)$, it immediately follows from the well-known result for μ that

$$
\sum_{d \mid n} \mu_{1}^{2}(d)=0
$$

Note also that $\mu(n) \mu_{1}(n)=\overline{\mu_{1}(n)}$.

2 Arithmetic Properties of μ_{1}.

Theorem 1 For $n>1$,

$$
\sum_{d \mid n} \mu_{1}(d)=(1+i)^{\omega(n)}
$$

Proof: See [1], p. 245.

The function $h(n)=(1+i)^{\omega(n)}$ will arise in several places further in this paper. The Dirichlet inverses of μ_{1} and of h are easy to compute.

Lemma 1 a. The Dirichlet inverse for μ_{1} is given by

$$
\mu_{1}^{-1}(n)=(-i)^{\Omega(n)}
$$

b. With $h(n)$ defined above, the Dirichlet inverse, $h^{-1}(n)$ is given by

$$
h^{-1}(n)=(1-i)^{\omega(n)}(-i)^{\Omega(n)}=\overline{h(n)} \mu_{1}^{-1}(n)
$$

Proof: a. Since μ_{1} and its supposed inverse are multiplicative, it suffices to show that $\sum_{d \mid n} \mu_{1}\left(\frac{n}{d}\right)(-i)^{\Omega(d)}$ is zero when $n=p^{\alpha}$, for p a prime and $\alpha>0$ and 1 when $n=1$. This is an easy exercise.
b. Since h and its supposed inverse are multiplicative, it suffices to show that $\sum_{d \mid n} h\left(\frac{n}{d}\right)(1-i)^{\omega(d)}(-i)^{\Omega(d)}$ is zero when $n=p^{\alpha}$, for p a prime and $\alpha>0$ and 1 when $n=1$. This is an easy exercise.

2.1 Analogs of the Arithmetic Functions:

The arithmetic functions,
$\tau(n)=\sum_{d \mid n} 1, \quad \sigma(n)=\sum_{d \mid n} d, \quad \phi(n)=\sum_{(d, n)=1} 1$
are all intimately connected with the Möbius function. Hence, we would expect the modified Möbius function to produce a new suite of analogous arithmetic functions.

2.1.1 Analogs of u and τ.

Since $u=\mu^{-1}$, we define $u_{1}=\mu_{1}^{-1}=(-i)^{\Omega}$ and note that $\left|u_{1}(n)\right|=u(n)$.
Also, since $\tau=u * u$, we define $\tau_{1}=\mu_{1}^{-1} * \mu_{1}^{-1}$, then, since τ_{1} is multiplicative, and

$$
\begin{gathered}
\tau_{1}\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} \mu_{1}^{-1}(d) \mu_{1}^{-1}\left(\frac{p^{\alpha}}{d}\right) \\
=\sum_{d \mid p^{\alpha}}(-i)^{\Omega(d)+\Omega\left(\frac{p^{\alpha}}{d}\right)}=(\alpha+1)(-i)^{\alpha},
\end{gathered}
$$

we have

$$
\tau_{1}(n)=\prod_{j}\left(\alpha_{j}+1\right)(-i)^{\alpha_{j}}=(-i)^{\Omega(n)} \tau(n)
$$

Thus $\left|\tau_{1}(n)\right|=\tau(n)$.
In consequence of our definition, we have $\tau_{1} * \mu_{1}=$ $(-i)^{\Omega}=u_{1}$.

2.1.2 Analogs of N and σ.

We replace the (completely multiplicative) function N, defined by $N(n)=n$, by $N_{1}(n)=(-i)^{\Omega(n)} n$. Since $\sigma=N * u$, we define $\sigma_{1}=N_{1} * u_{1}$. Since σ_{1} is multiplicative, and

$$
\begin{aligned}
& \sigma_{1}\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} N_{1}(d) \mu_{1}^{-1}\left(\frac{p^{\alpha}}{d}\right)=\sum_{d \mid p^{\alpha}} d(-i)^{\Omega(d)+\Omega\left(\frac{p^{\alpha}}{d}\right)} \\
& =(-i)^{\alpha}\left(1+p+p^{2}+\cdots+p^{\alpha}\right)=(-i)^{\alpha}\left(\frac{p^{\alpha+1}-1}{p-1}\right)
\end{aligned}
$$

we have

$$
\sigma_{1}(n)=\prod_{j}(-i)^{\alpha_{j}}\left(\frac{p_{j}^{\alpha_{j}+1}-1}{p_{j}-1}\right)=(-i)^{\Omega(n)} \sigma(n)
$$

Note again that $\left|\sigma_{1}(n)\right|=\sigma(n)$.
In consequence of our definition, we have $\sigma_{1} * \mu_{1}=$ N_{1}.

2.1.3 Analog of ϕ.

Since $\phi=N * \mu$, we define $\phi_{1}=N_{1} * \mu_{1}$. Since ϕ_{1} is multiplicative, and

$$
\phi_{1}\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} N_{1}(d) \mu_{1}\left(\frac{p^{\alpha}}{d}\right)
$$

$$
\begin{gathered}
=\sum_{d \mid p^{\alpha}} \mu_{1}(1) N_{1}\left(p^{\alpha}\right)+\mu_{1}(p) N_{1}\left(p^{\alpha-1}\right) \\
=(-i)^{\alpha} p^{\alpha}\left(1-\frac{1}{p}\right)
\end{gathered}
$$

we have

$$
\begin{aligned}
\phi_{1}(n) & =n \prod_{j}(-i)^{\alpha_{j}}\left(1-\frac{1}{p_{j}}\right) \\
& =(-i)^{\Omega(n)} \phi(n)
\end{aligned}
$$

Note again that $\left|\phi_{1}(n)\right|=\phi(n)$.

2.1.4 Analog of λ.

The classical Liouville function λ is defined by

$$
\lambda(n)=(-1)^{\Omega(n)}
$$

It is not immediately clear what the correct analogue should be. In order to obtain results analogous to the classical results, it seemed best to define:

$$
\lambda_{1}(n)=i^{r} \quad \text { where } n=M^{2}\left(p_{1} p_{2} \ldots p_{r}\right)
$$

When n is square, we take $\lambda(n)=1$.
It is immediately clear that λ_{1} is multiplicative.
Theorem 2 For $n \geq 1$,

$$
\lambda_{1}(n)=\sum_{d^{2} \mid n} \mu_{1}\left(\frac{n}{d^{2}}\right)
$$

Proof: It suffices to prove that these expressions agree at prime powers.

$$
\sum_{d^{2} \mid n} \mu_{1}\left(\frac{n}{d^{2}}\right)=\mu_{1}\left(p^{\alpha}\right)+\mu_{1}\left(p^{\alpha-2}\right)+\ldots
$$

This is $\mu_{1}(1)=1=\lambda_{1}\left(p^{\alpha}\right)$ in the case when α is even and $\mu_{1}(p)=i=\lambda_{1}\left(p^{\alpha}\right)$ in the case when α is odd.

By analogy with the classical case, we have
Theorem 3 For $n \geq 1$,

$$
\left(\lambda_{1} * u_{1}\right)(n)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Proof: Since the left-hand side is a multiplicative function, it again suffices to check the prime powers.

$$
\left(\lambda_{1} * u_{1}\right)\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} \lambda_{1}(d) u_{1}\left(\frac{p^{\alpha}}{d}\right)
$$

$$
=\sum_{d^{2} \mid p^{\alpha}} \lambda_{1}\left(d^{2}\right) u_{1}\left(\frac{p^{\alpha}}{d^{2}}\right)+\sum_{\substack{d \mid p^{\alpha} \\ d \text { not square }}} \lambda_{1}(d) u_{1}\left(\frac{p^{\alpha}}{d}\right) .
$$

In the case that α is even, these sums become:

$$
\begin{gathered}
u_{1}\left(p^{\alpha}\right)+u_{1}\left(p^{\alpha-2}\right)+\ldots \\
+u_{1}(1)+\lambda_{1}(p) u_{1}\left(p^{\alpha-1}\right)+\lambda_{1}\left(p^{3}\right) u_{1}\left(p^{\alpha-3}\right)+\ldots \\
+\lambda_{1}\left(p^{\alpha-1}\right) u_{1}(p) \\
=1
\end{gathered}
$$

since, when evaluated, all the terms cancel except $u(1)=1$. Similarly, the case α odd gives a sum of zero.

Theorem 4 For $n>1$,

$$
\sum_{d \mid n} \lambda_{1}(d) i^{\Omega(d)}= \begin{cases}-1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Proof: This is simply checked by again considering the sum at prime powers.

2.2 Möbius Inversion Analog:

The analog of Möbius inversion is provided by:

Theorem 5 Suppose the arithmetic functions F and f are connected by

$$
F(n)=\sum_{d \mid n} f(d)(-i)^{\Omega\left(\frac{n}{d}\right)},
$$

then for $n>1$,

$$
f(n)=\left(F * \mu_{1}\right)(n), \text { that is, }
$$

$$
f(n)=\sum_{d \mid n} F\left(\frac{n}{d}\right) \mu_{1}(d)=\sum_{d \mid n} F(d) \mu_{1}\left(\frac{n}{d}\right) .
$$

Proof: Since $F(n)=\sum_{d \mid n} f(d)(-i)^{\Omega\left(\frac{n}{d}\right)}$, can be written as $F=f * u_{1}$, we have

$$
F * \mu_{1}=(f * u) * \mu_{1}=f *\left(u * \mu_{1}\right)=f
$$

Translating back, the result follows.

2.3 Connections with the classical Arithmetic Functions.

There are many relations between these analogs and the classical functions. Most of these are just exercises, so I have only included a small number of the more important connections.

Theorem 6 Suppose the arithmetic functions F and f are connected by

$$
F(n)=\sum_{d \mid n} f(d)
$$

then for $n>1$,

$$
\begin{aligned}
& \left(F * \mu_{1}\right)(n)=(f * h)(n), \text { that is, } \\
& \sum_{d \mid n} F\left(\frac{n}{d}\right) \mu_{1}(d)=\sum_{d \mid n} f\left(\frac{n}{d}\right) h(d) .
\end{aligned}
$$

Proof: We can write Theorem 1 as
$u * \mu_{1}(n)=(1+i)^{\omega(n)}=h(n)$.
Also, $F(n)=\sum_{d \mid n} f(d)$, can be written as $F=f * u$ and so

$$
F * \mu_{1}=(f * u) * \mu_{1}=f *\left(u * \mu_{1}\right)=f * h
$$

Translating back, the result follows.
Theorem 7 For $n>1$,

$$
\mu_{1}(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) h(d)=(\mu * h)(n)
$$

Proof:

Use ordinary Möbius inversion on the result of Theorem 1.

Theorem 8 For $n>1$,

$$
\begin{gathered}
\left(\mu_{1} * \tau\right)(n)=\sum_{d \mid n} \mu_{1}(d) \tau\left(\frac{n}{d}\right)=\sum_{d \mid n}(1+i)^{\omega(d)} \\
=\sum_{d \mid n} h(d)
\end{gathered}
$$

Proof: This follows from a direct application of Theorem 6

Theorem 9 For $n>1$,

$$
\begin{gathered}
\sum_{d \mid n} \frac{\mu_{1}(d)}{d}=\frac{1}{n} \sum_{n \mid d} \phi\left(\frac{n}{d}\right)(1+i)^{\omega(d)}=\frac{1}{n}(\phi * h)(n) \\
=\prod_{k}\left(1+\frac{i}{p_{k}}\right) .
\end{gathered}
$$

Proof: From the well-known result, $\sum_{d \mid n} \phi(d)=n$, a direct application of Theorem 6 yields,

$$
\sum_{d \mid n} \frac{n}{d} \mu_{1}(d)=\sum_{n \mid d} \phi\left(\frac{n}{d}\right)(1+i)^{\omega(d)}
$$

The second equality can be obtained easily by evaluating the first sum at prime powers.

3 Analytic Theorems regarding μ_{1}.

We now consider the partial sums related to μ_{1} and try to obtain some preliminary asymptotics.

Theorem 10 For $x>1$

$$
\sum_{n \leq x} \mu_{1}(n)\left[\frac{x}{n}\right]=\sum_{n \leq x}(1+i)^{\omega(n)}=\sum_{n \leq x} h(n)
$$

Proof:

$$
\begin{aligned}
\sum_{n \leq x} \mu_{1}(n)\left[\frac{x}{n}\right]= & \sum_{n \leq x} \mu_{1}(n) \sum_{j \leq \frac{x}{n}} 1=\sum_{n \leq x} \sum_{d \mid n} \mu_{1}(d) \\
& =\sum_{n \leq x}(1+i)^{\omega(n)}
\end{aligned}
$$

from Theorem 1.
(Note: The penultimate equality uses the socalled sum-divisor identity:

$$
\left.\operatorname{viz} \sum_{n \leq x} g(n) \sum_{j \leq \frac{x}{n}} f(n j)=\sum_{n \leq x} f(n) \sum_{d \mid n} g(d) .\right)
$$

The following result gives the Dirichlet series for $h(n)$.
Corollary For $x>1$,

$$
\sum_{n \leq x} \mu_{1}(n)\left[\frac{x}{n}\right]^{2}=\frac{6 x^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{h(n)}{n^{2}}+O(x \log x)
$$

Proof:

$$
\begin{gathered}
\sum_{n \leq x} \mu_{1}(n)\left[\frac{x}{n}\right]^{2}=\sum_{n \leq x} \mu_{1}(n)\left(\frac{x}{n}+O(1)\right)^{2} \\
=\sum_{n \leq x} \mu_{1}(n) \frac{x^{2}}{n^{2}}+O\left(\sum_{n \leq x} \frac{x}{n}\right) \\
=x^{2} \sum_{n \leq x} \frac{\mu_{1}(n)}{n^{2}}+O\left(x \sum_{n \leq x} \frac{1}{n}\right) \\
=\frac{6 x^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(1+i)^{\omega(n)}}{n^{2}}+O(x \log x)
\end{gathered}
$$

using the previous theorem and standard asymptotic results.

3.1 The Sum $\sum_{n \leq x} h(n)$.

Theorem 11 For $x>1$,

$$
\left|\sum_{n \leq x} h(n)\right|=O(x \log x) .
$$

Proof: From Theorem 10,

$$
\begin{gathered}
\left|\sum_{n \leq x}(1+i)^{\omega(n)}\right|=\left|\sum_{n \leq x} \mu_{1}(n)\left[\frac{x}{n}\right]\right| \leq \sum_{n \leq x}\left[\frac{x}{n}\right] \\
\leq x \sum_{n \leq x} \frac{1}{n}=O(x \log x) .
\end{gathered}
$$

Note: It is not clear that this is the best estimate. Despite this, numerical evidence suggests that the result of Theorem 11 has an implied constant about 0.2 .

3.2 Series involving λ_{1}

Using Theorem 3 and the fact that $\sum_{n \leq x} \sum_{d \mid n} f(d)=$ $\sum_{n \leq x} f(n)\left\lfloor\frac{x}{n}\right\rfloor$ for any arithmetic function f and for $x>0$, we can prove:

Theorem 12 For $x>4$

$$
\left|\sum_{n \leq x} \frac{\lambda_{1}(n) i^{\Omega(n)}}{n}\right| \leq \frac{3}{2} .
$$

Proof: Applying the result above, we have

$$
\sum_{n \leq x} \lambda_{1}(n) i^{\Omega(n)}\left\lfloor\frac{x}{n}\right\rfloor=\sum_{n \leq x} \sum_{d \mid n} \lambda_{1}(n) i^{\Omega(n)} .
$$

By Theorem 3, the inner sum is zero whenever n is not a square and -1 when it is, so we can replace the double sum by $-\lceil\sqrt{x}\rceil$. Also, writing $\left\lfloor\frac{x}{n}\right\rfloor$ as $\frac{x}{n}-$ $\left\{\frac{x}{n}\right\}$ and re-arranging we have

$$
\begin{aligned}
\left|x \sum_{n \leq x} \frac{\lambda_{1}(n) i^{\Omega(n)}}{n}\right| & =\left|\sum_{n \leq x} \lambda_{1}(n) i^{\Omega(n)}\left\{\frac{x}{n}\right\}-\lceil\sqrt{x}\rceil\right| \\
\leq & x+\lceil\sqrt{x}\rceil \leq \frac{3}{2} x
\end{aligned}
$$

since for $x \geq 4, \sqrt{x} \leq \frac{1}{2} x$. Dividing by x gives the result.

4 The sum $\sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}$ and the analog of the Zeta Function.

Suppose $s>1$.
We define the modified Zeta function, $\zeta_{1}(s)$, by:

$$
\zeta_{1}(s)=\sum_{n=1}^{\infty} \frac{\mu_{1}^{-1}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{(-i)^{\Omega(n)}}{n^{s}}, \text { for } s>1
$$

with Euler product $\prod_{p}\left(1-\frac{1}{i p^{s}}\right)^{-1}$.
Also, $\frac{1}{\zeta_{1}(s)}=\sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}$.
These series and products only converge absolutely for $s>1$.

The following result is useful for numerical calculations

Lemma

For $s>1$,

$$
\sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}=\left(1-2^{s} i\right) \sum_{n \equiv 2 \bmod 4} \frac{\mu_{1}(n)}{n^{s}}
$$

Proof: We note that for k odd, $\mu_{1}(2 k)=i \mu_{1}(k)$ and that by definition $\mu_{1}(4 k)=0$. Splitting the series according as n is even or odd, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}=\sum_{\substack{n=1 \\
\text { neven }}}^{\infty} \frac{\mu_{1}(n)}{n^{s}}+\sum_{\substack{n=1 \\
\text { nodd }}}^{\infty} \frac{\mu_{1}(n)}{n^{s}} \\
&=\left\{\frac{\mu_{1}(1)}{1^{s}}+\frac{\mu_{1}(3)}{3^{s}}+\frac{\mu_{1}(5)}{5^{s}}+\ldots\right\} \\
&+\left\{\frac{\mu_{1}(2)}{2^{s}}+\frac{\mu_{1}(4)}{4^{s}}+\frac{\mu_{1}(6)}{6^{s}}+\ldots\right\} \\
&=\frac{2^{s}}{i}\left\{\frac{\mu_{1}(2)}{2^{s}}+\frac{\mu_{1}(6)}{6^{s}}+\frac{\mu_{1}(10)}{10^{s}}+\ldots\right\} \\
&+\left\{\frac{\mu_{1}(2)}{2^{s}}+\frac{\mu_{1}(6)}{6^{s}}+\frac{\mu_{1}(10)}{10^{s}} \ldots\right\} \\
&=\left(1-2^{s} i\right) \sum_{n \equiv 2 \bmod 4} \frac{\mu_{1}(n)}{n^{s}} .
\end{aligned}
$$

Using exactly the same idea, given any prime p, we can split the sums into terms with $n \equiv 1,2,3, \ldots, p$ $\bmod p$ and deduce that for $s>1$

$$
\sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}=\left(1-p^{s} i\right) \sum_{\substack{n \equiv 0 \bmod p \\ n>0}} \frac{\mu_{1}(n)}{n^{s}} .
$$

4.1 Dirichlet Series for $h(s)$.

Theorem 13 For $s>1$,

$$
\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}=\zeta(s) \sum_{n=1}^{\infty} \frac{\mu_{1}(n)}{n^{s}}
$$

Proof: See [1], p. 247.
Theorem 13 can now be written as

$$
\left|\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}\right|^{2}=\frac{\zeta^{2}(s) \zeta(2 s)}{\zeta(4 s)}
$$

for $s>1$.
For $s>1$, we can split the series into even and odd values of n and a simple re-arrangement leads to the identity

$$
\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}=\left(\frac{2^{s}+i}{2^{s}-1}\right) \sum_{\substack{n \geq 1 \\ n \text { odd }}} \frac{h(n)}{n^{s}}
$$

valid for $s>1$.
More generally, if p is prime, we can write

$$
\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}=\left(\frac{p^{s}+i}{p^{s}-1}\right) \sum_{\substack{n \geq 1 \\ n \neq 0 \bmod p}} \frac{h(n)}{n^{s}}
$$

valid for $s>1$. From this we have

$$
\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}=\left(\frac{p^{s}+1}{1+i}\right) \sum_{\substack{n \geq 1 \\ n \equiv 0 \bmod p}} \frac{h(n)}{n^{s}}
$$

valid for $s>1$.
Note: The Dirichlet series for $\frac{\zeta_{1}(2 s)}{\zeta_{1}(s)}$ does not appear to be analogous to the classical $\frac{\zeta(2 s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}$.

Corollary

For $s>1$,

$$
\sum_{n=1}^{\infty} \frac{(1-i)^{\omega(n)}(-i)^{\Omega(n)}}{n^{s}}=\frac{\zeta(4 s)}{\zeta(2 s) \zeta(s)}
$$

[^0]$$
\frac{\zeta_{1}(2 s)}{\zeta_{1}(s)}=\sum_{n=1}^{\infty} \frac{i^{\Omega(M)}(-i)^{\Omega(N)}}{n^{s}}
$$

Using the well-known formula for $\zeta(2 t), t$ an integer, we also have

Corollary

$$
\left|\zeta_{1}(t)\right|^{2}=\frac{(-1)^{t}(2 \pi)^{2 t}(2 t)!}{(4 t)!} \frac{B_{4 t}}{B_{2 t}}
$$

where t is an integer ≥ 1, and B_{t} are the Bernoulli numbers. ${ }^{2}$

Corollary

For t an integer greater than $1,\left|\frac{\zeta_{1}^{2}(t)}{\zeta_{1}(2 t)}\right|^{2}$ is rational.

4.2 Dirichlet series for modified arithmetic functions.

Since $\sigma_{1}(n)=(-i)^{\Omega(n)} \sigma(n)$, we can use the standard Euler product method to find the Dirichlet series for $\sigma_{1}(n)$ in terms of the modified Zeta function as follows.

Theorem 14 For $s>2$,

$$
\sum_{n=1}^{\infty} \frac{\sigma_{1}(n)}{n^{s}}=\zeta_{1}(s-1) \zeta_{1}(s)
$$

Proof:

$$
\begin{gathered}
\prod_{p} 1+\frac{\sigma_{1}(p)}{p^{s}}+\frac{\sigma_{1}\left(p^{2}\right)}{p^{2 s}}+\ldots \\
=\prod_{p} 1-i \frac{\sigma(p)}{p^{s}}-\frac{\sigma\left(p^{2}\right)}{p^{2 s}}+i \frac{\sigma\left(p^{2}\right)}{p^{2 s}}+\ldots \\
=\prod_{p} \frac{p-1}{p-1}-\frac{i}{p^{s}}\left(\frac{p^{2}-1}{p-1}\right) \\
=\frac{1}{p^{2 s}}\left(\frac{p^{3}-1}{p-1}\right)+\frac{i}{p^{3 s}}\left(\frac{p^{4}-1}{p-1}\right)+\ldots \\
=\prod_{p} \frac{1}{p-1}\left[p-\frac{i}{p^{s-2}}-\frac{1}{p^{2 s-3}}+\frac{i}{p^{3 s-4}}+\ldots\right] \\
\\
-\frac{1}{p-1}\left[1-\frac{i}{p^{s}}-\frac{1}{p^{2 s}}+\frac{i}{p^{3 s}}+\ldots .\right] \\
= \\
=\prod_{p} \frac{1}{p-1}\left[\frac{p}{1+i p^{1-s}}-\frac{1}{1+i p^{-s}}\right] \\
=\prod_{p} \frac{1}{\left(1+i p^{1-s}\right)\left(1+i p^{-s}\right)}=\zeta_{1}(s-1) \zeta_{1}(s) .
\end{gathered}
$$

A similar calculation gives

[^1]Theorem 15 For $s>2$,

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{\phi_{1}(n)}{n^{s}}=\frac{\zeta_{1}(s-1)}{\zeta_{1}(s)} . \\
\text { Hence } \sum_{n=1}^{\infty} \frac{\sigma_{1}(n)}{n^{s}}=\zeta_{1}^{2}(s) \sum_{n=1}^{\infty} \frac{\phi_{1}(n)}{n^{s}} .
\end{gathered}
$$

Theorem 16 For $s>1$,

$$
\sum_{n=1}^{\infty} \frac{\tau_{1}(n)}{n^{s}}=\zeta_{1}^{2}(s)
$$

Proof:

$$
\begin{gathered}
\zeta_{1}^{2}(s)=\sum_{n=1}^{\infty} \frac{(-i)^{\Omega(n)}}{n^{2}} \cdot \sum_{n=1}^{\infty} \frac{(-i)^{\Omega(n)}}{n^{2}} \\
=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{d \mid n}(-i)^{\Omega(d)} \cdot(-i)^{\Omega\left(\frac{n}{d}\right)} \\
=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{d \mid n}(-i)^{\Omega(n)}=\sum_{n=1}^{\infty} \frac{1}{n^{s}}(-i)^{\Omega(n)} \tau(n) \\
=\sum_{n=1}^{\infty} \frac{\tau_{1}(n)}{n^{s}} .
\end{gathered}
$$

References:

[1] Brown, P.G., Modifying Möbius, The Australian Mathematical Society Gazette, Vol 37, No.4, 2010, pp. 244-249.
[2] Jameson, G.J.O. The Prime Number Theorem, 2003.
[3] McCarthy, P.J. Introduction to Arithmetical Functions, 1986.

[^0]: ${ }^{1}$ My Vacation Scholar, Mr. Trent Merbach, discovered and proved the following result: Writing each integer n uniquely in the form $n=N^{2} M$, with M square-free, we have, for $s>1$,

[^1]: ${ }^{2}$ There are several (inconsistent) definitions of these. Here they are defined by the power series $\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n} t^{n}}{n!}$.

